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1. Introduction

Define an operatorU : E ′(Rn) → D′(Rn+1 × S
n−1) by

Uf(x, t, ω) = �−1(f(x) · δ(t − x · ω)),

where�−1 : E ′(Rn+1) → D′(Rn+1) denotes convolution with the forward
fundamental solution of the d’Alembertian onR

n+1. The main results of this
paper concern the mapping properties ofU on Sobolev and Besov spaces.
The mapping properties ofU on certain Fŕechet spaces of distributions were
previously studied by Melin [8,9].

The operatorU arises naturally in the study of scattering by a potential
on R

n [4,8,9,13]. Ifα(s, θ, ω) denotes the scattering kernel of a potential
q(x), so thatδ(s − t)δ(θ − ω) + α(s − t, θ, ω) is the Schwartz kernel of
the scattering operator forq, then an interesting problem is to determine to
what extent the backscatteringα(s,−ω, ω),∀s ∈ R, ω ∈ S

n−1, determines
q. Restricting formula (14) of [13] toθ = −ω, one finds that, for two
potentialsq1, q2 onR

3 with scattering kernelsα1, α2,

(α1 − α2)(s,−ω, ω)

= − 1
8π2

∫
R3

∂

∂s
(u1 ∗R u2)(x,−s, ω)[q1(x) − q2(x)]dx,

whereu1, u2 are the solutions to the continuation problems
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(� + qj(x))uj(x, t, ω) = 0 on R
3+1,

uj(x, t, ω) = δ(t − x · ω), t << 0.

If one tries as in [4] to form a solutionuj =
∑∞

k=0 u
(k)
j with u

(0)
j = δ(t −

x · ω) andu
(k+1)
j = −�−1(qj(x) · u(k)

j ), k ≥ 0, then the first two terms
giveuj(x, t, ω) � δ(t−x ·ω)−U(qj)(x, t, ω), with U the operator above,
and one is naturally interested in controllingU(q) with respect to various
function space norms.

To put the operatorU in context, note that if one replaces the characteris-
tic hyperplane{t = x ·ω} with the noncharacteristic{t = 0}, and suppress
theω variables, then the corresponding operator

V f(x, t) = �−1(f(x) · δ(t)), V : E ′(Rn) → D′(Rn+1),

is by Duhamel’s Principle the solution of the Cauchy problem

�V f(x, t) = 0 on R
n+1, V f(x, 0) = 0, ∂tV f(x, 0) = f(x),

and estimates forV include the familiar Strichartz estimates[14].
LetLp

s denote the standard Sobolev spaces of distributions withs deriva-
tives in Lp, and Bs

p,∞ the standard Besov spaces of distributions with
s derivatives having Littlewood-Paley components associated with large
frequencies uniformly inLp [7, v.3,p.472],[15].Lp

s andBs
p,∞ are localiz-

able and we work with their compactly supported and local variants, e.g.,
Lp
s,comp andBs

p,∞,loc. If X is a smooth manifold of dimensionN , and

Λ ⊂ T ∗X\0 is a conic Lagrangian submanifold, letIµ(Λ) denote the
Fourier integral distributions onX of orderµ associated toΛ [7, v.4,p.4].
If Λ is a conormal bundle,Λ = N∗Z with Z ⊂ X of codimensionk, then
one has the continuous inclusions

Iµ(Λ) ↪→ Bm
p,∞,loc ↪→ Lp

m−ε,loc, ∀ε > 0, 1 < p < ∞,

for m = −µ − N
4 + k(1

2 − 1
p′ ), wherep′ = p

p−1 is the dual exponent top.
One of the most interesting features of the operatorU is the limited

regularity that it possesses. This can already be seen by applyingU to a
test functionf ∈ C∞

0 (Rn). A calculation (see below) shows that near the
characteristic hyperplane{t = x · ω}, one hasUf(x, t, ω) � H(t − x · ω),
whereH is the Heaviside function. Thus, no matter how smoothf is, Uf
is not smoother than a general element of

I− n+1
2 (N∗{t − x · ω}) ↪→ B

1
p

p,∞,loc(Rn+1 × S
n−1) ↪→ Lp

1
p
−ε

,

∀ε > 0, 2 ≤ p < ∞.(1.1)



Wave equation 115

The operatorU is a generalized Fourier integral operator (see [11,6])
associated with two intersecting canonical relations,Λ1, Λ2 ⊂ (T ∗

R
n+1 ×

S
n−1\0) × T ∗

R
n. Two complications arise:Λ2 is degenerate, in that there

are points inΛ2 whereπR : Λ2 → T ∗
R
n is not a submersion, and bothΛ1

andΛ2 have points which project into the zero-section,0T ∗Rn . This second
fact is reflected in the limited regularity ofU . We are able to prove:

Theorem 1.
a) For n ≥ 2,

U : L2
s,comp(R

n) → L2
s+1,loc(Rn+1 × S

n−1), ∀s < −1
2
,

with the endpoint result

U : L2
− 1

2 ,comp(R
n) → B

1
2

2,∞,loc(Rn+1 × S
n−1).

b) For n ≥ 2,

U : Lp
s,comp(R

n) → Lp′

s+ 1
p′ ,loc(Rn+1 × S

n−1), s < 0,
4n

2n + 1
< p < 2.

Further estimates can be obtained by interpolating (a) and (b), but we
will not state these or be concerned with the endpoint results in (b) because
these estimates are probably not sharp. In fact, we conjecture that (b) holds
for 2n

n+1 < p < 2. To see this, we write

(1.2) Uf(x, t, ω) = K+ ∗Rn+1 (f(x)δ(t − x · ω))

whereK+(x, t) � ∂
n−3

2
t ( δ(t−|x|)

|x| n−1
2

) is the forward fundamental solution of

�. Thus,

(1.3) Uf(x, t, ω) � ∂
n−3

2
t (v(x, t, ω)),

where

(1.4) v(x, t, ω) =
δ(t − |x|)
|x|n−1

2

∗Rn+1 (f(x)δ(t − x · ω)).

To calculatev, consider, for fixedω ∈ S
n−1, the mapΦω : R

n×R
n → R

n+1

defined byΦω(y, z) = (y + z, y ·ω + |z|) = (x, t). Then,v(x, t, ω)dxdtdω
is the push-forward byΦω of the measuref(y)

|z| n−1
2

dydz onR
n × R

n. By the

coarea formula [2, Sect. 3.2],

(1.5) v(x, t, ω) =
∫

(Φω)−1(x,t)

f(y)

|z|n−1
2

dν
(x,t)
n−1 (y, z)

Jn+1(DΦω(y, z))
,
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wheredν(x,t)
n−1 is (n − 1)-dimensional surface measure on(Φω)−1(x, t) and

Jn+1(DΦω(y, z)) is (essentially) the maximal(n + 1) × (n + 1) minor of

DΦω. SinceDΦω =
[
In In
ω z

|z|

]
, we haveJn+1(DΦω(y, z)) � ||ω ∧ z

|z| || +

|ω − z
|z| |. Takingω = e1 for simplicity, and writingy = (y1, y

′), we have
that

(Φω)−1(x, t) =
{

(y, z) : y + z = x, y1 + |z| = t
}

is smooth and nonempty fort > x1 and is parametrized (viay → (y, x−y))
by the paraboloid{

y ∈ R
n : y1 =

t + x1

2
− |y′ − x′|2

2(t − x1)

}
.

Thus,

v(x, t, e1)(1.6)

� (t − x1)
n−5

2

∫
f
( t + x1

2
− |y′ − x′|2

2(t − x1)
, y′

) dy′

((t − x1)2 + |y′ − x′|2)n−3
4

.

Forf ∈ C∞
0 (Rn), split the domain of integration in (1.6) into{|y′−x′| ≤ t−

x1} and{t−x1 ≤ |y′−x′| ≤ c(t−x1)1/2}. Taking into account the smooth

dependence onω, this yieldsUf � H(t−x ·ω) ∈ I− n+1
2 (N∗{t = x ·ω}),

so that (1.1) and the comments above it hold.
To understand the restrictions on theLp

s → Lq
r boundedness ofU , fix

f ∈ C∞
0 (Rn), f ≥ 0, and setfδ(y) = f(yδ ). Then, fors ≤ n

p′ , p < n
1−s , we

have||fδ||Lp
−s

� δ
s+n

p and we ask whether it is possible that||Ufδ||Lq
r

≤
C||fδ||Lp

s
uniformly asδ → 0+ ; for simplicity we taken = 3 andr = 0

and ask for whichp, q ands one has local boundednessU : Lp
−s → Lq.

From (1.6), one can see that forδ2 < t − x1 < δ , δ < |x′| < (t − x1)
1
2 ,

and
∣∣∣|x′| − ( x1

t−x1
)

1
2

∣∣∣ < δ we haveUfδ ≥ c δ2

|x′| . Thus,

∫ ∫
|Ufδ|qdxdt ≥ c

∫ δ

δ2

∫ (t−x1)
1
2

δ

δ2q

ρq
· ρ

t − x1
· ρδdρd(t − x1) =⇒

||Ufδ||Lq ≥ cδ
5
2q

+ 3
2 , q < 3; ≥ cδ

7
q |ln(δ)| 2

q , q = 3; and≥ cδ
q+4

q , q > 3.
Thus, if U is bounded fromLp

−s(R
3) → Lq(R4 × S

2) locally, thens ≤
3+ 5

2q − 3
p , q < 3; s ≤ 7

9 − 3
p , q = 3 ands ≤ 1+ 4

q − 3
p , q > 3. If, in

the context of Theorem 1, one takesq = p′, s = 1
p′ , then necessarilyp > 3

2 .

Notation: We use the notation< ξ >= (1 + |ξ|2) 1
2 for ξ ∈ R

n and in a
product setting,< ξ, η > denotes< (ξ, η) >= (1 + |ξ|2 + |η|2) 1

2 . The
Euclidian innner product is denoted byξ · η.
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2. Microlocal structure and estimates forU

Let K+ ∈ D′(Rn+1) be the forward fundamental solution of the wave
equation. Then the Schwartz kernel of the operatorU is

(2.1) KU (x, t, ω, y) =
∫

R

K+(x − y, t − s)δ(s − y · ω)ds.

We may representK+ by

K+(x, t) =
∫

Rn+2
ei(x·ξ+tτ+ σ

2τ2 (τ2−|ξ|2))b(x, t; (ξ, τ), σ)dξdτdσ,

with b(x, t; (ξ, τ), σ) belonging to the product-type symbol classS−2,0

(Rn+1 × (Rn+1\0) × R) (cf.,[11,6]), where

SM,M ′
(RN

x × (Rm
θ \0) × R

n
σ) =

{
a(x, θ, σ) : |∂γx∂βθ ∂ασa(x, θ, σ)|

≤ CαβγK < θ, σ >M−|β|< σ >M ′−|α|, x ∈ K ⊂⊂ R
N

}
.(2.2)

Writing δ(s − y · ω) =
∫

R
ei(s−y·ω)ρc(s, ρ)dρ, c ∈ S0(R × (R\0))

compactly supported ins − y · ω , we obtain the oscillatory representation

KU (x, t, ω, y) =
∫

Rn+3
ei((x−y)·ξ+(t−s)τ+(s−y·ω)ρ+ σ

2τ2 (τ2−|ξ|2))

b(x, t, ω, y; (ξ, τ), σ)dξdτdσdρds.

Since thes-derivative of the phase isρ − τ , we may integrate by parts ins
and obtain a gain of(1 + |ρ − τ |)−N ,∀N , and then integrating inρ ands
yields

KU (x, t, ω, y) =
∫

Rn+2
ei((x−y)·ξ+(t−y·ω)τ+ σ

2τ2 (τ2−|ξ|2))

a(x, t, ω, y; (ξ, τ), σ)dξdτdσ,(2.3)

with a ∈ S−2,0((Rn+1×S
n−1×R)×(Rn+1\0)×R) . Standard wave-front

set analysis shows that

WF (KU ) ⊂ Λ1 ∪ Λ2,

where

(2.4)

Λ1 = N∗{(x, t, ω, y) : x = y, t = x · ω}
= {(x, x · ω, ω, ξ, τ,−τi∗ωx;x,−ξ − τω)

: x ∈ R
n, ω ∈ S

n−1, (ξ, τ) ∈ R
n+1\0},
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(where, forω ∈ S
n−1, iω : TωS

n−1 → TωR
n is the inclusion map) and

Λ2 = N∗{|t − y · ω|2 = |x − y|2}
= {(x, x · ω + r(1 + ω · ν), ω, τν, τ,−τi∗ω(x + rν);x + rν,−τ(ν + ω))

: x ∈ R
n, ω, ν ∈ S

n−1, r ∈ R, τ ∈ R\0}.(2.5)

Λ1 andΛ2 are smooth, conic lagrangian submanifolds ofT ∗(Rn+1×S
n−1×

R
n)\0 that intersect cleanly in codimension 1, and the phase function of (2.3)

is a “multiphase” function parametrizing the pair(Λ1, Λ2) in the sense of
[12]. Sincea ∈ S−2,0, we have

U ∈ I−(n+4
4 ),− 1

2 (Λ1, Λ2),

in the notation of [11,6]. Microlocally, away fromΛ1 ∩ Λ2, we haveU ∈
I− n+6

4 (Λ1\Λ2) andU ∈ I− n+4
4 (Λ2\Λ1) . Using a parabolic cutoff, intro-

duced in this context by Melrose [10](cf., [3]), we can actually decompose

(2.6) U ∈ I
− n+4

4
1
2

(Λ1) + I
− n+4

4
1
2

(Λ2),

where the subscript12 refers to amplitudes which lie in the symbol class
S 1

2 ,
1
2

. In fact, letχ ∈ C∞
0 (Rn) with χ ≡ 1 near0, and write the amplitude

a(x, t, ω; (ξ, τ), σ) in (2.3) as

a = χ(
σ2

< ξ, τ >
) · a + (1 − χ)(

σ2

< ξ, τ >
) · a

= a1 + a2.

Then, in the oscillatory integral (2.3) corresponding toa1, we first integrate
in σ; since the region being integrated over is contained in{|σ| ≤ c <
ξ, τ >1/2} , the resulting expression is

(2.7) KU1(x, t, ω, y) =
∫

Rn+1
ei((x−y)·ξ+(t−y·ω)τ)b1(x, t, ω, y; ξ, τ)dξdτ

with b1 ∈ S
− 3

2
1
2

(Rn+1 × S
n−1 × (Rn+1\0)) , yielding U1 ∈ I

− n+4
4

1
2

(Λ1).

On the support ofa2, we have|σ| ≥< ξ, τ >1/2 , so that the product-type
estimates (2.2) (withM = −2,M ′ = 0) imply a2 ∈ S−2

1
2 ,

1
2
(Rn+1 × S

n−1 ×
(Rn+2\0)) , whence the corresponding operator,U2, belongs toI

− n+4
4

1
2

(Λ2).

We note for future use that the amplitudea2 actually gains< ξ, τ >−1 for
each differentiation inξ or τ ; we will refer to this as type(1, 0), (1

2 , 0).
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Furthermore, we can assume that|ξ| � |τ | on supp(a2), since away from

{|ξ| = |τ |}, we haveKU ∈ Ψ−2 ◦ I− n−2
4 (Λ1) ↪→ I− n+6

4 (Λ1).
To prove part (a) of Theorem B, it suffices to prove the desired regularity

for eachUj . As mentioned in§1, there is a limitation on the regularity that
Uf can possess, regardless of how smoothf is, due to the fact that each
Λj ⊂ (T ∗(Rn+1 × S

n−1)\0) × T ∗
R
n has points sitting over the zero-

section,0T ∗Rn . In the parametrization (2.4), the points whereξ = −τω
project to0T ∗Rn , as do the points withν = −ω in (2.5). To understand
the implications of this for the estimates, consider the following model, to
whichΛ1 can be conjugated by a local diffeomorphism fromR

n+1 × S
n−1

to R
n × R × R

n−1. Let N, k ≥ 1, l ≥ 0 be integers. With coordinates
y′ ∈ R

N andx = (x′, x′′, x′′′) ∈ R
N × R

k × R
l, consider the canonical

relation
Λ̂ =

{
(x′, 0, x′′′, ξ′, ξ′′, 0;x′, ξ′) : (x′, x′′′) ∈ R

N+l, (ξ′, ξ′′) ∈ R
N+k\0

}

(2.8) = N∗
{

(x′, x′′, x′′′, y′) : x′ = y′, x′′ = 0
}
.

Note thatΛ̂ is nondegenerate in that the projectionπL : Λ̂ → T ∗
R
N+k+l\0

is an embedding andπR : Λ̂ → T ∗
R
N is a submersion. Also, there are

points inΛ̂ sitting above the zero section,0T ∗Rn , namely{ξ′ = 0}, and

πLπ
−1
R (0T ∗Rn) = {(x′, 0, x′′′, 0, ξ′′, 0) : (x′, x′′′) ∈ R

N+l, ξ′′ ∈ R
k\0}

= N∗{x′′ = 0}.

The operatorTf(x) = f(x′)δ(x′′) belongs toI
k−l
4 (Λ̂) and, as with

the operatorU , it fails to mapC∞
0 (RN ) to C∞(RN+k+l) ; indeed, for

f ∈ C∞
0 (RN ) , Tf(x) is a smooth multiple ofδ(x′′) , which belongs to

I− N−k+l
4 (N∗{x′′ = 0}) ↪→ B

− k
2

2,∞,loc(RN+k+l) ↪→ L2
− k

2 −ε
(RN+k+l)

for anyε > 0, and no better. In general, to obtain the boundedness properties
onL2-based Sobolev spaces that one expects from the nondegeneracy of the
projectionsπL, πR, an operator inI(Λ̂) must have a sufficiently negative
order.

This behavior can be considered in a superficially more general setting.
Let X,Y be manifolds withdim(X) = M > dim(Y ) = N . Let C ⊂
(T ∗X × T ∗Y )\0T ∗(X×Y ) be a nondegenerate canonical relation, so that
at all pointsπL : C → T ∗X is an immersion andπR : C → T ∗Y is
a submersion. Since the zero section0T ∗Y is lagrangian inT ∗Y , by [5]
we have thatΓC = πlπ

−1
R (0T ∗Y ) ↪→ T ∗X is an immersed lagrangian in

T ∗X\0. If πX : T ∗X → X is the projection onto the spatial variable
and we make the (generic) assumption thatrank(d(πX |ΓC

)) is constant
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on an immersed neighborhood ofc0 ∈ C, say of constant rankN + l,
then microlocallyΓC = N∗γ, with γ ↪→ X a submanifold of dimension
N + l. Lettingk = M − N − l = codim(γ), we may then introduce local
coordinatesy′ ∈ R

N onY andx = (x′, x′′, x′′′) ∈ R
N × R

k × R
l onX so

thatC = Λ̂ as in (2.8). Iff ∈ C∞
0 (Y ) andA ∈ I∗(C), thenAf ∈ I∗(ΓC)

is in general not smooth.
Returning to the model case, letΨm

ρ (RN ) denote the class of pseudo-
differential operators of orderm and type(ρ, 1 − ρ) onR

N .

Proposition 2.1.LetAj ∈ I
µj− l+k

4
ρ (Λ̂) , j = 1, 2, for some1

2 ≤ ρ ≤ 1, be
properly supported. Then, ifµj < −k

2 , j = 1, 2, we have

A∗
2A1 ∈ Ψµ1+µ2

ρ (RN ).

Proof.We write

Ajf(x) =
∫

RN×(RN+k\0)

ei[(x
′−y′)·ξ′+x′′·ξ′′]aj(x, y, (ξ′, ξ′′))f(y)dydξ′dξ′′,

with aj ∈ S
µj− k

2
ρ (R2N+k+l × (RN+k\0)) . Then the Schwartz kernel of

A∗
2A1 is

KA∗
2A1(z

′, y′) =
∫

ei[(x
′−y′)·ξ′−(x′−z′)·η′+x′′·(ξ′′−η′′)]a1a2dxdξ

′dξ′′dη′dη′′.

We may assume that supp(aj) ⊂ {|ξ′| ≤ 1
2 |ξ′′|} , since away fromξ′ = 0

the projectionπR avoids0T ∗Rn and the desired result follows from the
standard FIO calculus. Thex-gradient of the phase in (2.9) is(ξ′ − η′, ξ′′ −
η′′), so we can integrate by parts in the regions{|ξ′| ≥ 3

2 |η′|} and{|ξ′| ≤
2
3 |η′|} and obtain aC∞ kernel. Similarly, the regions{|ξ′′| ≥ 3

2 |η′′|} and
{|ξ′′| ≤ 2

3 |η′′|} both contributeC∞ kernels. Thus, we can localize the
amplitude to{|ξ′| ∼ |η′|, |ξ′′| ∼ |η′′|} by multiplying by cutoff functions
ψ(<ξ′>

<η′>)ψ(<ξ′′>
<η′′>) whereψ ∈ C∞

0 (R), ψ ≡ 0 near0 andψ ≡ 1 on [12 , 2].
We thus have been reduced to considering the modified kernel

K̃(z′, y′) =
∫

ei[(x
′−y′)·ξ′−(x′−z′)·η′]

b(z′, y′, x, ξ′, η′)ψ(
< ξ′ >
< η′ >

)dx′dx′′′dξ′dη′,(2.10)



Wave equation 121

where

b(z′, y′, x, ξ′, η′) =
∫

eix
′′·(ξ′′−η′′)ψ(

< ξ′′ >
< η′′ >

)

a1(x, y′, ξ′, ξ′′)a2(x, z′, η′, η′′)dx′′dξ′′dη′′

=
∫

eix
′′·ξ′′

a1∗̃ξ′′a2(x, y′, z′, ξ′, η′, ξ′′)dx′′dξ′′,(2.11)

wherea1∗̃ξ′′a2 is the modified partial convolution inξ′′ defined by

a1∗̃ξ′′a2(x, y′, z′; ξ′, η′; ξ′′)

=
∫

a1(x, y′, ξ′, ξ′′ + η′′)a2(x, z′, η′, η′′)ψ(
< ξ′′ + η′′ >

< η′′ >
)dη′′.(2.12)

We will apply the following result, withmj = µj − k
2 , j = 1, 2.

Proposition 2.2.Let aj ∈ S
mj
ρ (RN+k+l × (RN+k\0)) be supported in

{|ξ′| ≤ c|ξ′′|}, j = 1, 2 . Then, ifmj < −k, j = 1, 2 , for anyc0 > 0 we
have

a)

a1∗̃ξ′′a2 ∈ Sm1+m2+k,0
ρ (R3N+k+l × (Rk\0)ξ′′ × R

2N
ξ′,η′)

in the region{< ξ′′ >≥ c0 < ξ′, η′ >} ; and
b)

a1∗̃ξ′′a2 ∈ Sm1+m2+k
ρ (R3N+k+l × (R2N+k\0))

in the region{< ξ′′ >≤ c0 < ξ′, η′ >} .

Proof. For (a), we note that13 < ξ′′ >≤< η′′ > on the support of

ψ(<ξ′′+η′′>
<η′′> ) and decompose the integral in (2.12) into two terms, corre-

sponding to the regions{< η′′ >≥ 3 < ξ′′ >} and{1
3 < ξ′′ >≤< η′′ >≤

3 < ξ′′ >}. To estimate the size ofa1∗̃ξ′′a2, we note that on the first region,
the integrand is≤ c < η′′ >m1+m2 , hence (by the elementary Proposition
2.3(a) below), the contribution to the integral is≤ c < ξ′′ >m1+m2+k, since
m1 +m2 < −k. Differentiating inξ′′ brings a gain of< ξ′′ >−1 to the inte-
grand, while differentiating inξ′, η′ brings no gain. On the support of the inte-
grand of the second term, which has volume≤ c < ξ′′ >k, both< η′′ > and
< ξ′′+η′′ > are∼< ξ′′ >, and so again the integral is≤ c < ξ′′ >m1+m2+k

, and the same comments concerning derivatives apply. Hence, on{< ξ′′ >≥
c < ξ′, η′ >} , a1∗̃ξ′′a2 ∈ Sm1+m2+k,0

ρ (R3N+k+l × (Rk\0) × R
2N ) .
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On the other hand, if< ξ′′ >≤ c0 < ξ′ > , then we simply have

|a1∗̃ξ′′a2| ≤ c

∫
<η′′>≥c<ξ′>

< η′′ >m1+m2 dη′′ ≤ c < ξ′ >m1+m2+k,

and differentiation in any ofξ′, η′, ξ′′ produces a gain of< ξ′ >−1 . This
proves (b). ��
Proposition 2.3.(a) If a functiona(ξ′, ξ′′) onR

n−k × R
k satisfies

|a(ξ′, ξ′′)| ≤ c1 < ξ′, ξ′′ >m, some m < −k,

thenb(ξ′) onR
n−k defined by

b(ξ′) =
∫

Rk

|a(ξ′, ξ′′)|dξ′′

satisfies|b(ξ′)| ≤ c2 < ξ′ >m+k, with c2 only depending onc1, k,m, n.
(b) If a ∈ Sm

ρ (Rn−k
ξ′ × R

k
ξ′′), m < −k, and one sets

b(ξ′;x′′) =
∫

Rk

eix
′′·ξ′′

a(ξ′, ξ′′)dξ′′,

then, for eachξ′, b ∈ Imρ ({x′′ = 0}), i.e., is conormal of orderm for
{x′′ = 0} and satisfies|b(ξ′;x′′)| ≤ c2 < ξ′ >m+k.

Applying Proposition 2.2 as indicated, and noting thatmj < −k

if µj < −k
2 , we return to (2.11). The contribution from{(x′′, ξ′′) :<

ξ′′ >≥ c < ξ′, η′ >}, after integration by partsM times inx′′, is ≤ c <
ξ′, η′ >µ1+µ2+k−M . The contribution from{< ξ′′ >≤< ξ′, η′ >} is also
estimated via this integration by parts: the integrand is≤ cM < ξ′′ >−M<
ξ′, η′ >µ1+µ2 ; upon integrating over the ball{< ξ′′ >≤ c < ξ′, η′ >}, this
is ≤ c < ξ′, η′ >µ1+µ2 (for M > k.) Derivatives ofb are handled similarly,
and thusb ∈ Sµ1+µ2

ρ . In (2.10), we may now perform stationary phase in
x′, η′ to obtain

(2.13) K̃(z′, y′) =
∫

ei(z
′−y′)·ξ′

c(x′′′; z′, y′; ξ′)dξ′dx′′′

with c ∈ Sµ1+µ2
ρ ; integrating inx′′′, we find thatA∗

2A1 is a pseudo-
differential operator onRN with symbol of type(ρ, 1−ρ) and orderµ1+µ2
, finishing the proof of Proposition 2.1.

Using Proposition 2.1 withA1 = A2 = U1, N = n, k = 1, l = n − 1
andµj = −1, j = 1, 2 , we haveU∗

1U1 ∈ Ψ−2(Rn) =⇒
U1 : L2

−1,comp(R
n) → L2

loc(Rn+1 × S
n−1).
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We will show that

(2.14)
U1 : L2

s,comp→ L2
s+1,loc, ∀s < 0, and

U1 : L2
comp→ B1

2,∞,loc ↪→ L2
1−ε,loc, ∀ε > 0,

which will follow from the fact that, for allr ∈ R, the Schwartz kernel
(2.15)

K<D>rU1<D>−r ∈ I
− n+4

4
1
2

(Λ1)+C∞(Rn, I− n+2
2 +r(N∗{t−x ·ω = 0})),

where< D >= (I + |D|2) 1
2 . In fact, (2.15) implies that

< D >r U1 < D >−r: L2
−1,comp(R

n) → L2
loc(Rn+1 × S

n−1)

+I− n+2
2 +r(N∗{t − x · ω = 0})

=⇒
U1 : L2

r−1,comp→ L2
r,loc + I− n+2

2 (N∗{t − x · ω = 0})

↪→ L2
r,loc + B1

2,∞,loc

sinceIνρ (N∗{t = x · ω}) ↪→ B
−ν− n

2

2,∞,loc(Rn+1 × S
n−1). This implies (2.14).

To see (2.15), we work in the generality of Proposition 2.1 :

Proposition2.4.LetΛ̂beas inProposition2.1. LetA ∈ I
µ− l+k

4
ρ (Λ̂)andB ∈

Ψ r1
ρ (RN ), C ∈ Ψ r2

ρ (RN+k+l) be properly supported. Then the Schwartz
kernel

KCAB ∈ I
µ+r1+r2− l+k

4
ρ (Λ̂) + C∞(RN ; I

µ+r2− N+k+l
4

ρ (N∗{x′′ = 0})).

Proof.We start with the caseC = I ∈ Ψ0. We have the oscillatory repre-
sentation

KAB(x, z′) =
∫

ei[(x
′−y′)·ξ′+x′′·ξ′′+(y′−z′)·η′]a(∗; ξ′, ξ′′)b(∗; η′)dy′dξ′dξ′′dη′

witha ∈ S
µ− k

2
ρ , b ∈ Sr1

ρ . (Here, and throughout, we use∗ to denote spatial
variables irrelvant to the argument.) As in the proof of Proposition 2.1, we
can assume thatsupp(a) ⊂ {|ξ′| ≤ 1

2 |ξ′′|}, since outside of that region
there is no zero-section problem and the standard result on the composition
of FIOs withΨDOs applies. Since they′-gradient of the phase is−ξ′ + η′,
the standard integration by parts iny′ shows that the contribution toKAB

from {< η′ >≥ 3
2 < ξ′ > +1

2 < ξ′′ >} is in C∞(RN+k+l × R
N ). The

remaining regions are{2
3 < <ξ′>

<η′> < 3
2} , {1

2 < ξ′′ >≥< ξ′ >≥ 3
2 < η′ >}

and{1
2 < ξ′′ >≥< η′ >≥ 3

2 < ξ′ >}. On the first region, stationary
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phase iny′, η′ yields an element ofIµ+r1− l+k
4 (Λ̂) . On the second region,

integration by partsM times iny′ , followed by integration inη′ over{<
η′ >≤ 2

3 < ξ′ >} yields
∫

ei[(x
′−y′)·ξ′+x′′·ξ′′]c(∗; ξ′′; ξ′)dy′dξ′′dξ′,

with c ∈ Sµ− k
2 ,−M̃ (RN+k+l × R

N × (Rk\0) × R
N ) , where−M̃ =

µ + k
2 + r1 + N − M(1 − ρ). Integrating iny′, ξ′ when−M̃ < −N yields

a kernel in

C0(RN ; I
µ− N+k+l

4
ρ (N∗{x′′ = 0})).

Derivatives inz′ bring down powers ofη′ , which are handled by increasing
M . Thus, the contribution toKAB from the second region is in

C∞(RN ; I
µ− N+k+l

4
ρ (N∗{x′′ = 0})).

Similarly, for the third region, we integrate by partsM times iny′, integrate
over
{< ξ′ >≤ 2

3 < η′ >} , and repeat the above argument to obtain a con-
tribution in the same class. This finishes the proof whenC = I. For general
C, we note that since the projectionπL : Λ̂ → T ∗

R
N+k+l\0 avoids the

zero section, the usual composition calculus ofΨDOs and FIOs applies.
Furthermore, we have

Ψ r2
ρ (RN+k+l) ◦ C∞(RN ; I

µ− N+k+l
4

ρ (N∗{x′′ = 0}))

⊂ C∞(RN ; I
µ+r2− N+k+l

4
ρ (N∗{x′′ = 0})),

yielding the desired result. ��
For A = U1, we haveµ = −1 andN + k + l = 2n, so Proposition

2.4 implies (2.15). This finishes the proof of theL2 estimates, Thm. 1(a),
for U1. In fact, (2.14) allows one to go12 derivative higher; the limitation
s < −1

2 in Thm. 1(a) comes fromU2, which we now turn to.

We first show that ifA ∈ Iµ− n
4 (Λ2) is properly supported, thenA∗A ∈

Ψ2µ
0,0(R

n) if −5
4 < µ < 0. SinceΨ−µ

1,0 ◦Ψ2µ
0,0 ◦Ψ−µ

1,0 ⊂ Ψ0
0,0, by the Caldeŕon-

Vaillancourt theorem forΨ0
0,0, we haveA∗A : L2

µ,comp → L2
−µ,loc , and

thusA : L2
µ,comp→ L2

loc. From (2.3), we have

KA(x, t, ω, y) =
∫

Rn+2
ei((x−y)·ξ+(t−y·ω)τ+ σ

2τ2 (τ2−|ξ|2))

aµ−1(x, t, ω, y; (ξ, τ), σ)dξdτdσ,(2.16)
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with aµ−1 ∈ Sµ−1
1
2

supported in{c < ξ, τ >
1
2 ≤ |σ| ≤ c < ξ, τ >} Thus,

KA∗A(z, y)

=
∫ ∫ ∫

eiφ(y,z,x,t,ω,ξ,σ,τ,ξ̃,σ̃,τ̃)aµ−1aµ−1dxdtdωdξdσdτdξ̃dσ̃dτ̃ ,

where the integral is overRn+1 × S
n−1 × R

n+2 × R
n+2 and

φ(y, z, x, t, ω, ξ, σ, τ, ξ̃, σ̃, τ̃) = (x − y) · ξ − (x − z) · ξ̃
+(t − y · ω)τ − (t − z · ω)τ̃ +

σ

2τ2 (τ2 − |ξ|2) − σ̃

2τ̃2 (τ̃2 − |ξ̃|2).

Sincedxφ = ξ − ξ̃, dtφ = τ − τ̃ , we can integrate by parts inx, τ̃ to obtain
a gain of(1+ |ξ − ξ̃|)−N (1+ |τ − τ̃ |)−N in the integrand. Then integrating
in x, t, ξ̃, τ , we obtain a new oscillatory representation ofKA∗A with phase

(z − y) · (ξ + τω) +
σ − σ̃

2τ2 (τ2 − |ξ|2),

amplitudeb2(∗; (ξ, τ, σ̃))b1(∗; (ξ, τ, σ)), with bj ∈ Sµ−1
1
2

, j = 1, 2, and

integrated with respect todωdσdσ̃dτdξ. We can thus write
(2.17)

KA∗A(z, y) =
∫

ei[(z−y)·(ξ+τω)+σ(τ2−|ξ|2)
2τ2 ]b1∗̃b2(∗; ξ, τ, σ)dωdσdτdξ,

whereb1∗̃b2 is the partial convolution in theσ variable. Using Proposition 2.2
with k = 1, one has supp(aj) ⊂ {< σ >≤ c < ξ, τ >} , so thatb2µ−1 =
b1∗̃b2 ∈ S2µ−1

(1,0),( 1
2 ,0)

if µ − 1 < −1, i.e.,µ < 0, with supp(b2µ−1) ⊂ {<
σ >≤ c < ξ, τ >,< ξ >�< τ >}. Letting η = τω, dτdω = |η|1−ndη,
andζ = ξ + η, we have

(2.18) KA∗A(z, y) =
∫

ei(z−y)·ζc(z, y; ζ)dζ,

where
(2.19)

c(z, y; ζ) =
∫

Rn+1
e
i σ
2|η|2 (2η−ζ)·ζ

b2µ−1(z, y; ζ − η, |η|, σ)|η|1−ndηdσ.

We will show thatc ∈ S2µ
0,0 if −5

4 < µ < 0.

We note that in the expression forc(ζ), the integration is over a region
of the form

Hγ(ζ) = {η : γ−1|η| ≤ |ζ − η| ≤ γ|η|}
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for someγ > 1. This isR
n with two balls deleted:

Hγ(ζ) = R
n\(B(−δζ; δ̃|ζ|) ∪ B((1 + δ)ζ; δ̃|ζ|)),

for appropriatẽδ > δ > 0 depending onγ. To estimatec(y, z; ζ), we divide
Hγ(ζ) into five subregions, described below, noting that one may introduce
a subordinate partition of unity which will not affect the(1, 0), (1

2 , 0) type
of the amplitude that was described above.

Denote byψ the phase function of (2.19), and note that

(2.20) dηψ = σ
|η|2(ζ − η) − |ζ − η|2η

|η|4
and

(2.21) |dσψ| = |(2η − ζ) · ζ
2|η|2 | =

|ζ|
|η|2 · dist(η, Pζ),

wherePζ is the affine hyperplaneζ2 + ζ⊥ .

Region (I):{(η, σ) : dist(η, Pζ) ≤ c|ζ|, |σ| ≤ c|ζ| }.

We are working near the nonisolated critical pointsη = ζ
2 , |σ| ≤ c|ζ|.

One calculates thatd2ψ has rank 2 at these points, with a lower bound on
a 2 × 2 minor beingc|ζ|−2 uniformly. Performing stationary phase in two
variables and integrating over a ball of radiusc|ζ| in the remainingn − 1,
we obtain a contribution toc(z, y; ζ) dominated by

|ζ|2µ−1|ζ|1−n(|ζ|−2)− 1
2 |ζ|n−1 ≤ c|ζ|2µ.

Now pick anε ∈ (0,min(− 1
4µ , µ + 5

4)). We form

Region (II):{(η, σ) : η ∈ Hγ(ζ), dist(η, Pζ) ≥ cmax( |η| 32+ε

|ζ| , |ζ|)}.

For such points, we have|dσψ| ≥ c|η|ε− 1
2 . Integrating by partsN times

in σ yields an integrand which is≤ |η|−2−n+N( 1
2−ε− 1

2 ) ≤ c|η|−2−n−εN .
Integrating over{|σ| ≤ c|η|} and then integrating over{|η| ≥ c|ζ|} yields
a contribution toc(y, z; ζ) which isO(|ζ|−1−εN ) = o(|ζ|2µ) for N > 1/ε.

Region (III): {(η, σ) : η ∈ Hγ(ζ), c|ζ| ≤ |η| ≤ c|ζ|1/ε, dist(η, Pζ) ≤
max( |η| 32+ε

|ζ| , |ζ|)}.

We further decompose this into (IIIa):{c|η| 1
2 ≤ |σ| ≤ |η|1+ε

|ζ| } and (IIIb):

{ |η|1+ε

|ζ| ≤ |σ| ≤ c|η|}. On (IIIb), one has

|dηψ| ≥ c
|σ|
|η|2 |η − ζ

2
| ≥ c

|η|ε
|ζ| ,



Wave equation 127

which allows us to integrate by partsN times inη. Since each differentiation
in η gains|η|−1, the integrand is≤ c|η|−2−n( |ζ|

|η|ε |η|−1)N . Integrating inσ
and then inη and introducing polar coordinates alongPζ , this contribution
to c(y, z; ζ) is dominated by

|ζ|N
∫ |ζ| 1ε

|ζ|
r−1−n−(1+ε)Nrn−2(r

3
2+ε/|ζ|)dr,

which is ≤ c|ζ|−1−εN + c|ζ|ε− 3
2−εN = o(|ζ|2µ) for N large. On (IIIa),

integration by parts doesn’t help and so we simply estimate the integraldσ
by c|η|−2−n|η|1+ε|ζ|−1, which, when integrated inη is dominated by

∫ |ζ| 1ε

|ζ|
rε−1−n

|ζ| rn−2 r
3
2+ε

|ζ| dr ≤ c|ζ|2ε− 5
2 = o(|ζ|2µ)

sinceε < µ + 5
4 .

Finally, we have

Region (IV): {(η, σ) : η ∈ Hγ(ζ), |η| ≥ c|ζ| 1
ε , dist(η, Pζ) ≤

c |η| 32+ε

|ζ| }.

Here, we simply estimate the contribution toc(y, z; ζ) by
∫ ∫

(IV )
|η|−2−ndσdη ≤ c

∫ ∞

|ζ| 1ε
r−1−nrn−2 r

3
2+ε

|ζ| d, r

which is≤ c|ζ|− 1
2ε = o(|ζ|2µ) if ε < − 1

4µ .

Thus, we have shown that|c(y, z; ζ)| ≤ c|ζ|2µ. Differentiation of the
phase inζ just multiplies the integrand by a function homogeneous of degree
zero, which leaves the type and order of the amplitude unchanged, as does
differentiation in the spatial variables. Hence,c ∈ S2µ

0,0 , and thusA∗A :
L2
µ,comp → L2

−µ,loc =⇒ A : L2
µ,comp → L2

loc ; for A = U2 we have

µ = −1 and thusA : L2−1,comp→ L2
loc. Combined with the estimates for

U1, this gives Thm. 1(a) fors < −1
2 . To obtainU2 : L2

− 1
2 ,comp→ B

1
2

2,∞,loc,

we need the following the analogue of Proposition 2.4, which exhibits the
additional 12 in the order of the singularity on{t = x · ω} (in comparison
with Proposition 2.4) mentioned at the end of the discussion ofU1.

Proposition 2.5.LetA ∈ I
µ− n

4
ρ (Λ2), andB ∈ Ψ r1

ρ (Rn), C ∈ Ψ r2
ρ (Rn+1 ×

S
n−1) be properly supported. Then the Schwartz kernel

KCAB ∈ I
µ+r1+r2− n

4
ρ (Λ2) + C∞(Rn; I

µ+r2− n−1
2

ρ (N∗{t = x · ω})).
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Proof.SinceπL : Λ2 → T ∗(Rn+1×S
n−1)\0 , as in the proof of Proposition

2.4 it suffices to deal with the caseC = I. We make use of the alternative
phase function

φ̃(x, t, ω, y; ξ, τ, σ) = (x − y) · ξ + (t − x · ω)τ +
σ

2τ2 (τ2 − |ξ − τω|2),
which also parametrizesΛ2. Then we have the representation

KA(x, t, ω, y) =
∫

eiφ̃aµ−1dξdτdσ, aµ−1 ∈ Sµ−1
ρ ,

and we may assume that<ξ−τω>
<τ> ∈ (2

3 ,
3
2) and< ξ, τ >1/2≤< σ > on the

support ofaµ−1(x, t, ω, y; ξ, τ ;σ). With br1 ∈ Sr1
ρ the amplitude ofB, we

have
(2.22)

KAB(x, t, ω, y) =
∫

ei[(x−y)·ξ+(t−x·ω)τ+ σ
2τ2 (τ2−|ξ−τω|2)+(y−z)·η]

· aµ−1(∗; ξ, τ ;σ) · br1(∗; η)dydξdτdσdη.

The proof now follows in general terms that of Proposition 2.4. Where2
3 <

<ξ>
<η> < 3

2 , stationary phase iny, η yields an oscillatory integral with phasẽφ

and amplitude inSµ+r1−1
ρ , yielding an element ofI

µ+r1− n
4

ρ (Λ2). Since the
y-gradient of the phase in (2.22) is−ξ + η, on the regions{< ξ >≥ 3

2 <

η > +1
2 < σ >} and{< η >≥ 3

2 < ξ > +1
2 < σ >} one may integrate

by parts any numberM times in y, yielding an amplitude of arbitrarily
negative order inξ, η, σ. Wheremax(< ξ >,< η >) ≥ 1

2 < τ >, this may
be integrated in all the phase variables to yield aC∞ kernel; whereτ is the
elliptic variable, integrating in all variables exceptτ gives an expression∫

ei(t−x·ω)τ ãµ−1(∗; τ)dτ ∈ C∞(Rn; I
µ− n+1

2
ρ (N∗{t = x · ω})).

Finally, one must deal with the regions{1
2 < σ >≥< ξ >≥ 3

2 < η >}
and{1

2 < σ >≥< η >≥ 3
2 < ξ >}. Note that integrating inσ yields, by

Proposition 2.3(b), the representation∫
ei[(x−y)·ξ+(t−x·ω)τ+(y−z)·η]

aµ

(
∗; ξ, τ ;

τ2 − |ξ − τω|2
τ2

)
br1(∗; η)dysηdξdτ,

with aµ(∗; ξ, τ ; s) of orderµ in (ξ, τ), taking values inIµ−1({s = 0}).
If < ξ >≥ 3

2 < η >, then integration by partsM times iny and then
integration iny, η gives∫

ei[x·ξ+(t−x·ω)τ ]aµb−M ′(∗; ξ)dξdτ.
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We may now integrate inξ, noting that for each fixedτ , the integral inξ is
transverse to the singularity ofaµ at{|ξ − τω| = |τ |} and yields a (smooth)

symbol inτ , giving
∫

ei(t−x·ω)τ bµ(∗; τ)dτ ∈ Iµ− n−1
2 (N∗{t = x · ω}). On

the other hand, if< η >≥ 3
2 < ξ >, we integrate by parts iny and then

integrate iny, ξ to obtain
∫

ei[(t−x·ω)τ−z·η]bµ(∗; τ)c−M ′(∗; η)dτdη =
∫

ei(t−x·ω)τ b̃µ(∗; τ)dτ

∈ C∞(Rn; Iµ− n−1
2 (N∗{t = x · ω})),

finishing the proof of Proposition 2.5.

Now repeat the reasoning below (2.15), noting that (2.14) has been re-
placed by
(2.23)

K<D>rU2<D>−r ∈ I
− n+4

4
1
2

(Λ2)+C∞(Rn, I− n+1
2 +r(N∗{t−x ·ω = 0})),

so that

U2 : L2
r−1 → L2

r + I− n+1
2 (N∗{t − x · ω = 0}) ↪→ L2

r + B
1
2

2,∞,loc.

Hence,U2 : L2
s,comp → L2

s+1,loc,∀s < −1
2 andU2 : L2

− 1
2 ,comp →

L2
1
2 ,loc + B

1
2

2,∞,loc ↪→ L2
1
2 ,loc, finishing the proof of Thm. 1(a).

3.Lp
s → Lp′

t estimates

We embed the operatorU in an analytic familyUα, α ∈ C, by inserting a
factor< ξ, τ >−α into the amplitude of the oscillatory representation (2.3).
Using the same parabolic cutoff as previously, decomposeUα = Uα

1 +Uα
2 ,

with Uα
j ∈ I

−Re(α)−1− n
4

1
2

(Λj), j = 1, 2. By Proposition 2.1, we have that

Uα∗
1 Uα

1 ∈ Ψ
−2Re(α)−2
1
2

(Rn) for −Re(α) − 1 < −1/2 and thus

(3.1) Uα
1 : L2

−Re(α)−1,comp→ L2
loc, −1

2
< Re(α).

Furthermore,

KUα
1
(x, t, ω, y) =

∫ ∫
ei[(x−y)·ξ+(t−x·ω)τ ]bα1 dξdτ,
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with bα1 ∈ S
− 3

2−Re(α)
1
2

. Thus,KUα
1

∈ L∞
loc if Re(α) > n − 1

2 , and hence

(3.2) Uα
1 : L1

comp→ L∞
loc, Re(α) > n − 1

2
,

Similarly, by the results of§2 for I
µ− n

4
1
2

(Λ2), we have

(3.3) Uα
2 : L2

−Re(α)−1,comp→ L2
loc, −1 < Re(α) <

1
4
,

and alsoKUα
2

∈ L∞
loc if Re(α) > n, so that

(3.4) Uα
2 : L1

comp→ L∞
loc, Re(α) > n.

It is straight forward to verify that the growth of the bounds in (3.1)-(3.4)
are at most exponential in|Im (α)|. Interpolating (3.1) forRe(α) = − 1

2+ε

with (3.2) for Re(α) = n − 1
2+ε for ε > 0 arbitrarily small, we obtain

U0
1 : Lp

− 1
p′

→ Lp′
, ∀p, 4n

2n+1 < p < 2. Interpolating (3.3) forRe(α) =

−n−1
2n with (3.4) forRe(α) = n + ε, we obtain the same bounds forU0

2 ;
sinceU = U0

1 + U0
2 , we have shown that

U : Lp

− 1
p′ ,comp→ Lp′

loc,
4n

2n + 1
< p < 2.

To extend this toLp
s → Lp′

t estimates, we use

Proposition 3.1.If T ∈ I
µ− n

4
ρ (Λj), j = 1 or 2, is continousLp

s,comp →
Lq

t,loc for somes, t ∈ R, then

T : Lp
s+r,comp→ Lq

t+r,loc ∀r <
1
q

− µ − t − 1.

Proof. If Aj ∈ I
µ− n

4
ρ (Λj) andB ∈ Ψ−r(Rn), C ∈ Ψ r(Rn+1 × S

n−1) are
elliptic and properly supported with parametricesB−1, C−1, then

KCAjB ∈ I
µ− n

4
ρ (Λj) + C∞(Rn+1 × S

n−1; Iµ+r− n−1
2 (N∗{t = x · ω}))

(or better) by Proposition 2.4 and 2.5. An element of the first space maps
Lp
s,comp → Lq

t,loc by assumption and therefore its contribution to

Aj = C−1(CAjB)B−1 mapsLp
s+r,comp→ Lq

t+r,loc. For the second term,
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wenote thatoperatorswithSchwartzkernels inC∞(Rn+1×S
n−1; Iµ+r− n−1

2

(N∗{t = x·ω})) mapLp
s,comptoIµ+r− n−1

2 (N∗{t = x·ω}). The inclusion

Iµ+r− n−1
2 (N∗{t = x · ω}) ↪→ Lq

t,loc

holds ifq < (µ+r+t+1)−1. Thus, ifr < min(−µ−t, 1
q −µ−t−1) = 1

q −
µ− t− 1, then the second contribution toAj mapsLp

s+r,comp→ Lq

t+r,loc.
��

Applying the Proposition toU , we obtain

U : Lp
s(R

n) → Lp′

s+ 1
p′

(Rn+1 × S
n−1), s < 0,

4n
2n + 1

< p < 2,

yielding Thm. 1(b).

References
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7. L. Hörmander, The Analysis of Linear Partial Differential Operators, vols. 1–4

Springer-Verlag 1984
8. A. Melin, The Lippmann-Schwinger equation treated as a characteristic Cauchy prob-

lem, Sem. sur les equ. aus der. par. (Ec. poly.)12 (1988-1989)
9. A. Melin, On the use of intertwining operators in inverse scattering, in Schrödinger

operators (Sonderborg, 1988) ed. by H. Holden and A. Jensen, Lecture Notes in Phys.
345 Springer-Verlag 1989

10. R. Melrose, Notes on marked lagrangians, M.I.T. lecture notes
11. R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm.

Pure Appl. Math.32 (1979) 482–519
12. G. Mendoza, Symbol calculus associated with intersecting lagrangians, Comm. PDE

7 (1982) 1035–1116
13. P. Stefanov, A uniqueness result for the inverse back-scattering problem, Inverse prob-

lems6 (1990) 1055–1064
14. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of

solutions of wave equations, Duke Math. Jour.44 (1977) 705–713
15. H. Triebel, Theory of Function Spaces, Birkhäuser 1983


