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1. Introduction
Define an operatd?’ : £'(R") — D'(R"! x S*~1) by
Uf(a:,t,w) = D_l(f(x) . 5(t — T u)))7

whered ! : &/(R"*1) — D'(R™*!) denotes convolution with the forward
fundamental solution of the d’Alembertian &1, The main results of this
paper concern the mapping propertiedobn Sobolev and Besov spaces.
The mapping properties éf on certain Fechet spaces of distributions were
previously studied by Melin [8,9].

The operatof/ arises naturally in the study of scattering by a potential
onR" [4,8,9,13]. Ifa(s, #,w) denotes the scattering kernel of a potential
q(z), so thatd(s — t)5(0 — w) + a(s — t,0,w) is the Schwartz kernel of
the scattering operator fgr then an interesting problem is to determine to
what extent the backscatterings, —w,w),Vs € R,w € S"~!, determines
g. Restricting formula (14) of [13] t& = —w, one finds that, for two
potentialsg;, g onR3 with scattering kernela;, as,

(a1 — a2)(s, —w,w)
1 0

=11 55 (w1 #r u2)(@, =8, w)[q1 (¢) — g2(x)]dz,

whereuq, uy are the solutions to the continuation problems
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(O +gj(z))uj(z,t,w) =0 on R3+L,
uj(z,t,w) =6(t — - w),t << 0.

If one tries as in [4] to form a solution; = 7 Ou ) with u( ) = ot —

w) andugk“) = -0 (gj(z) -u§k)),k > 0, then the first two terms
glve uj(x, t,w) ~§(t—z-w)—U(g)(x,t,w), withU the operator above,
and one is naturally interested in controllibdq) with respect to various
function space norms.

To put the operatdy in context, note that if one replaces the characteris-
tic hyperplang(t = z - w} with the noncharacteristit = 0}, and suppress
thew variables, then the corresponding operator

Vf(z,t) =0 (f(x) - 0(t), V:ER") =D R,
is by Duhamel’s Principle the solution of the Cauchy problem
DVf(l’,t) =0 on Rn+1> Vf($, 0) =0, atVf(.’L',O) = f(x)a

and estimates fov" include the familiar Strichartz estimates[14].

Let L% denote the standard Sobolev spaces of distributionssdémiva-
tives in L?, and B, , the standard Besov spaces of distributions with
s derivatives havmg Littlewood-Paley components associated with large
frequencies uniformly inC? [7, v.3,p.472],[15].L% and B, ,, are localiz-
able and we work with their compactly supported and local variants, e.g.,
Licomp andB® .. If X is a smooth manifold of dimensioN, and

A C T*X\0 is a conic Lagrangian submanifold, |ét(A) denote the
Fourier integral distributions oX of ordery associated tol [7, v.4,p.4].
If Ais aconormal bundled = N*Z with Z c X of codimensiork, then
one has the continuous inclusions

I"(A) = B” | — LP

oo loC m—cloc’ Ve>0, 1<p<oo,

form = —p — & + k(3 — ), wherep’ = £ is the dual exponent to.
One of the most interesting features of the operéfais the limited

regularity that it possesses. This can already be seen by apjilytoga

test functionf € C§°(R™). A calculation (see below) shows that near the

characteristic hyperplang = = - w}, one hadJ f(z,t,w) ~ H(t — x - w),

where H is the Heaviside function. Thus, no matter how smapik, U f

is not smoother than a general element of

I (Nt —z-w}) < BP R xS — I

P

Ioc(
(1.1) Ve >0, 2<p<oo.
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The operatoiU is a generalized Fourier integral operator (see [11,6])
associated with two intersecting canonical relatiohs,A; C (T*R" ! x
S*=1\0) x T*R™. Two complications arised, is degenerate, in that there
are points ind, whereng : A — T*R™ is not a submersion, and baoth
and s have points which project into the zero-sectiofsr~. This second
fact is reflected in the limited regularity éf. We are able to prove:

Theorem 1.
a) Forn > 2,
U: L compR") = L2, 1oc(R"™H x S"71), s < —5
with the endpoint result
1

U: L2_%7comp(R”) — 113227007|0C(1R<"+l x S,

b) Forn > 2,
/ 477/
. TP n p n+1 n—1

U.LS7C0de)—>LS+ﬁ,IOC(R xS ),S<0, 2n+1<p<2

Further estimates can be obtained by interpolata)cad o), but we
will not state these or be concerned with the endpoint results) ingcause
these estimates are probably not sharp. In fact, we conjecturdo}hrals
for 2% < p < 2. To see this, we write

n+l
(1.2) Uf(z,t,w) = K4 sgnt1 (f(2)0(t — 2 -w))
where K (x,t) ~ 6:53(?:5;;1”) is the forward fundamental solution of
O. Thus,
(1.3) Uf(etw) ~ 0,7 (u(z,t,w),
where
(1.4) vz, t,w) = (W‘_n;pf‘) spnt1 (f(2)d(t — 2 - w)).
x

To calculatey, consider, for fixed) € S*~1, the mapp~ : R* xR" — R"*!
defined by?“(y, z) = (y+ z,y-w+|z|) = (z,t). Thenw(x, t,w)dxdtdw
is the push-forward by of the measure%dydz onR"™ x R"™. By the

|22

coarea formula [2, Sect. 3.2],

fly) Ay, 2)
A1) |22 Tt (DP(y, 2))

(1.5) v(z, t,w) = /@
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wheredu(‘” t) is (n — 1)-dimensional surface measure @) ~!(z,¢) and
Jn+1(D§Z5w(y, z)) is (essentially) the maximédh + 1) x (n + 1) minor of
) =

I, I,
D®¥. SinceDP¥ = Z} , we have, 11 (DP*(y, z)) ~ |lw A ‘H +
|2]
lw — E |\ Takingw = e; for simplicity, and writingy = (y1,v’), we have
that

(@) @, t) = {(1.2) g+ 2= mpn + |2 = 1]
is smooth and nonempty fér> x; and is parametrized (via— (y, z—y))
by the paraboloid

_ttm Y- 2|2
R™ : -
{ve > 20— :131)}
Thus,
(16) ’U(.T, t7 61)

nesf o tx Y —a'P dy'

~ (t—x 2/f - Y —

TP M@—xﬂlﬂy—w?)f
Forf € C5°(R™), splitthe domain of integrationin (1.6) infdy’ —2'| < t—
ziyand{t—z, < |y —2'| < c(t—z1)Y?}. Takinginto accountthe smooth
dependence an, thisyieldsU f ~ H(t —x-w) € I~ (N*{t =z -w}),
so that (1.1) and the comments above it hold.

To understand the restrictions on thé — LI boundedness df, fix
feCE®M), f>0,andselfs(y) = f(}§). Then, fors < 2 p < ™, we
have|| fs|[r» =~ 5°7» and we ask whether it is possible thet f5]| o <

C||fs||z» uniformly asé — 0* ; for simplicity we taken = 3 andr = 0
and ask for whicltp, ¢ ands one has local boundedness: L” , — L4,

From (1.6), one can see that féf < ¢ — xl <o,0< 2] < (t— xl)%,
and)|x’]—(—) >c| - Thus,

) (t—xl)? 524 p
//\Uf5|qudt > c/ / R — pédpd(t —r) =
52 Js Pl t—

2 7 +4
U fsllpe > 6372, q < 3; > eda|in(d)|7, ¢ = 3; and> e6™v , ¢ > 3.
Thus, if U is bounded fromZ” ((R3) — L4(R* x S?) locally, thens <
3+45—-3,g<3; s<f-3 g¢=3ands< 1+4—§, q > 3.1f, in
the context of Theorem 1, one takgs- p/, s = ,, then necessarily > 2

Notation: We use the notatior: ¢ >= (1 + |¢|? ) for ¢ € R and in a

product setting< &, 7 > denotes< (¢,7) >= (1 + €2 + |n|?)2. The
Euclidian innner product is denoted By .
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2. Microlocal structure and estimates forU

Let K. € D'(R™"!) be the forward fundamental solution of the wave
equation. Then the Schwartz kernel of the operatas

21)  Ku(obwy) = /Rm(:g gt — $)0(s — y - w)ds.
We may represenk’, by
K (x,t) = /R N @I (TN (0 4 (€, 1), 0)dedrdo,
with b(z,t; (&,7),0) belonging to the product-type symbol class??
(R x (R™1\0) x R) (cf.,[11,6]), where
SMMREY x (RF\0) x Rp) =

{a(:v,@,a) 0198 0%l(x, 0, 0)|
22) < Capg < 0,0 >Mlc g M=l 5 e K RN}.

Writing 6(s —y - w) = [p es=y@)re(s, p)dp, ¢ € SO(R x (R\0))
compactly supported is — y - w , we obtain the oscillatory representation

Ky (x,t,w,y) = / @y EH (=) +(s—yw)pt 575 (-[¢]%)

Rn+3

b(z,t,w,y; (&, 7),0)dldTdodpds.

Since thes-derivative of the phase js— 7, we may integrate by parts in
and obtain a gain ofl + |p — 7|)~", VN , and then integrating ip ands
yields

Ky(z,t,w,y) = / o @=y) &t (t—yw)r+ % (T2~ [¢]%)

Rn+2

(2.3) a(z,t,w,y; (§7),0)dédrdo,

witha € S20((R**! x S"~1 x R) x (R*F1\0) x R) . Standard wave-front
set analysis shows that

WF(KU) cAU Ag,
where
A = N{(z,t,w,y) =yt =z w}
(24) = {(x,ac~w,w,§,r, _TikuCU;x,—E_TW)

cx € R",we S (¢,7) € RMH\O},
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(where, forw € "1, 4, : T,,S*~! — T,,R" is the inclusion map) and

Ay = NH{|t —y - w|* = |z — y[*}
={(z,z-w+r(l+w- -v),w,v,7,—7i5(x + 1v); 2 + rv,—7(V + W))
(2.5) cz € R"w,veS" 1 reR,7eR\0}.

/Ay andA, are smooth, conic lagrangian submanifoldgdfR" 1 x S*—1 x
R™)\Othatintersectcleanly in codimension 1, and the phase function of (2.3)
is a “multiphase” function parametrizing the péit;, A2) in the sense of
[12]. Sincea € S~20, we have

l\)\»—l

U eI~ 3(Ay, Ay),

in the notation of [11, 6]. Microlocally away from; N Ay, we havel &€

I**(Al\/lg) andU € I~ (/12\/11) Using a parabolic cutoff, intro-

duced in this context by Melrose [10](cf., [3]), we can actually decompose
_n+4

(2.6) UGI En (Ay) + 1 (Ag),

2

where the subscrip% refers to amplitudes which lie in the symbol class
51 1 . Infact, lety € Cg°(R™) with x = 1 near0, and write the amplitude

(x t,w; (&, 7),0)in (2.3) as

0_2 2

)at(l-x)(——)-a

a = x(

<&T> <&ET>

= aj + as.

Then, in the oscillatory integral (2.3) correspondingipwe first integrate
in o; since the region being integrated over is contained|inf < ¢ <
¢, 7 >1/2} | the resulting expression is

(2.7) Ku,(w,t,w,y) = /]R | T (@1 w, s €, 7)dgdr

_ntd
with b; € S (R”“ x S"1 x (R™T1\0)) , yieldingUy € I, * (44).
2
On the support ofiy, we havelo| >< &,7 >1/2 | so that the product-type
estimates (2.2) (witd/ = —2, M’ = 0) imply ag € S72 (R"H! x S*~1 x
272

n+4

(R"+2\0)) , whence the corresponding operatdy, belongstof1 T (Ag).

We note for future use that the amplitudgactually gains< f, >~ for
each differentiation ir¢ or 7 ; we will refer to this as typ&1,0), (3,0).
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Furthermore, we can assume thgt~ |7| on supp(az), since away from
{I€] = |7}, we haveKy € W20 I~"7 (A1) — I~ "1 (A3).

To prove part (a) of Theorem B, it suffices to prove the desired regularity
for eachU;. As mentioned ir§1, there is a limitation on the regularity that
U f can possess, regardless of how smapbik, due to the fact that each
A; C (T*(R™ x S*=1)\0) x T*R" has points sitting over the zero-
section,0r«g» . In the parametrization (2.4), the points whére= —7w
project toOp-gn, as do the points with = —w in (2.5). To understand
the implications of this for the estimates, consider the following model, to
which A; can be conjugated by a local diffeomorphism fri#r! x S*—1
to R” x R x R* ! Let N,k > 1,1 > 0 be integers. With coordinates
y € RN andz = (2/,2”,2") € RY x R* x R, consider the canonical
relation
/i _ {(l’/, 0’ x///’ 5/’ f”, O; $/’ 5/) : (x/7 x///) c RNJrl7 (5/7 f”) c RNJrk\O}

(2.8) = N*{(m’,x//,x/",y') cx =y 2 = 0}.

Note that/ is nondegenerate in that the projection: A — T*RN+k+\
is an emtgedding andp : A — T*RY is a submersion. Also, there are
points inA sitting above the zero sectioby-g~, Nnamely{¢’ = 0}, and

mrg (Op-gn) = {(2/,0,2",0,£",0) : (2/,2"") € RNF! ¢ € RM\0}
= N*{z" = 0}.

The operatoT' f(z) = f(2')d(2”) belongs tol%(/i) and, as with
the operatort/, it fails to mapCs°(RY) to C°(RN+#+1) ; indeed, for
f € C(RYN), Tf(z) is a smooth multiple of (z”) , which belongs to

_ N—k+l

_k
T (N =0) < B, 2 oo RV o L2 (RNHHH)

»

foranye > 0, and no better. In general, to obtain the boundedness properties
on L2-based Sobolev spaces that one expects from the nondegeneracy of the
projectionsry,, mg, an operator irf(/i) must have a sufficiently negative
order.

This behavior can be considered in a superficially more general setting.
Let X, Y be manifolds withdim(X) = M > dim(Y) = N. LetC C
(I X x T*Y)\O7-(x xy) be a nondegenerate canonical relation, so that
at all pointsw;, : C — T*X is an immersion andg : C — T*Y is
a submersion. Since the zero sectiprny is lagrangian inf™Y, by [5]
we have thatl'z = TFZTF}_zl(OT*y) — T*X is an immersed lagrangian in
T*X\0. If 7x : T*X — X is the projection onto the spatial variable
and we make the (generic) assumption thatk(d(mx|r,)) is constant
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on an immersed neighborhood af € C, say of constant rankv + [,
then microlocallyl« = N*~, with v — X a submanifold of dimension
N + 1. Lettingk = M — N — [ = codim(~), we may then introduce local
coordinateg/ € RN onY andx = (2/,2",2™) € RY x R¥ x Rl on X so
thatC' = A asin (2.8). Iff € C°(Y) andA € I*(C), thenAf € I*(Ic)
is in general not smooth.

Returning to the model case, W(RN) denote the class of pseudo-

differential operators of orden and type(p, 1 — p) onR".

ko
Proposition 2.1.Let A; € Iﬁj t(A),5=1,2,for some% <p<1,be

properly supported. Then, jf; < —%,j = 1,2, we have

A5 Ay € wirti2(RNY),

Proof. We write

Ajf(x) = / e =42 g (g, (€1, €7)) f(y)dyde!de”

RN x (RN+k\0)

K
with a; € S)°~ 2 (R2NFh+L 5 (RN+#\0)) . Then the Schwartz kernel of
A;Al is

Kaza, (259") :/ei[(m'y/)f’(r’Z’)-n”r:t”-(&”n”)}alazdxdgldfudn/dnu‘

We may assume that supp;) C {|¢'| < [¢”|}, since away frong’ = 0
the projectionrr avoidsO7«g» and the desired result follows from the
standard FIO calculus. Thegradient of the phase in (2.9)(§ — /', " —
n""), so we can integrate by parts in the regidi| > 2[»/|} and{|¢'| <
2|n'|} and obtain aC° kernel. Similarly, the regiong|¢”| > 3|n”|} and
{1¢"] < 2[n"|} both contributeC* kernels. Thus, we can localize the
amplitude tof|¢'| ~ |7/|,]¢"| ~ |n"|} by multiplying by cutoff functions
w(ié;i)@b(jgii) wherey € C§°(R), % = 0 near0 andy = 1 on|[1, 2.

We thus have been reduced to considering the modified kernel

R y) = / (il@ )€~ (a' =) ]

<& >
<n >

(2.10) b(2' Y, z, & n')y( )da'da" dg' dny
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where

i (€1 —pl! < 5// >
b(,y @, &) = /e (&"=n >w<< o ~

Cll(l', yla flv 5”)62(1:; Z,, 77,, U,/)d;'lf”df”d?’]”
(211) = / 67@”'5//041;’;5”62 (I’, y,) Zl) é-,a 77,7 fﬂ)dﬂ?”dé—ﬂ,

wherea; %¢/a- is the modified partial convolution i¢i” defined by

alif”aQ(l‘)yluZ/;glvn/;gll)
_ <& +n">
(2.12) = /a1(x,y/75/,§"+77")a2(x,z',77,,77”)¢(€<77,,n>

)dn”-

We will apply the following result, withm; = p; — %,j =1,2.

Proposition 2.2.Leta; € S,” (RN*+k+ 5 (RN*#\0)) be supported in
{1¢'| < cl€”|}, 5 =1,2.Then, ifm; < —k,j = 1,2, foranyc, > 0 we
have

a)

arigry € SOV (RA\0)er x REY)

in the region{< ¢ >> ¢y < &',1 >} ;and
b)
alig//62 e S;n1+m2+k(R3N+k’+l % (RQN-HC\()))

in the region{< &" >< ¢y < &, 0 >}.

Proof. For (a), we note tha% < ¢ ><< 7" > on the support of

w(%) and decompose the integral in (2.12) into two terms, corre-
sponding to the regions< n” >> 3 < ¢’ >}and{3 < ¢’ ><< 5’ ><

3 < & >}. To estimate the size af *¢»a2, we note that on the first region,
the integrand i< ¢ < 1 >™"2 hence (by the elementary Proposition
2.3(a) below), the contribution to the integrakisc < ¢/ >™1+m2+k gince

m1 +me < —k. Differentiating in¢” brings a gain ok ¢” >~!to the inte-
grand, while differentiating i,  brings no gain. On the support of the inte-
grand of the second term, which has volushe < ¢’ >*, both< 7" > and
<&+ >are~< £ >, and so again the integralisc < ¢ >mitmatk

, and the same comments concerning derivatives apply. Hen¢e, gh >>

c< & >}, arkenay € SyrTTRTRO(RINTEH L (RR\0) x R2V)
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On the other hand, i ¢’ >< ¢y < & >, then we simply have
|arkends| < ¢ / < ST A" < e < g Mt
<n'>>e<€>

and differentiation in any of’, ’, ¢” produces a gain of ¢ >~! . This
proves (b). O

Proposition 2.3.(a) If a functiona (&', £”) onR™ % x R* satisfies
la(¢, ") < er < &€ >™, some m < —k,

thenb(¢') onR™*~* defined by
He) = [ lafe’€nlag”

satisfiegb(¢')| < ea < & >™FF with ¢, only depending ony, k, m, n.

(b) Ifa € S;M(RY* x RE,), m < —k, and one sets

b = [ o ale e ag'

then, for eacht’, b € I'({z" = 0}), i.e., is conormal of ordern for
{z" = 0} and satisfie$h(¢'; 2")| < ¢y < & >™MHE,

Applying Proposition 2.2 as indicated, and noting thaf < —k
if u; < —%, we return to (2.11). The contribution frof(z",¢") :<
¢ >>c < ¢y >}, after integration by part8/ times inz”, is < ¢ <
¢y >mtuetk=M The contribution from{< ¢’ ><< ¢, 1’ >} is also
estimated via this integration by parts: the integrand ig,; < ¢/ > M <
¢, >mth2 s upon integrating over the balk ¢ >< c < ¢, >}, this
is<c< &,y >#mthez (for M > k.) Derivatives of are handled similarly,
and thush € S5 2, In (2.10), we may now perform stationary phase in
z’,n’ to obtain

(2.13) K(,y) = /ei(Z’—y’)f’c(x///; 2yl €)dE da”

with ¢ € S4*#2 ; integrating inz”’, we find thatA3A; is a pseudo-
differential operator o’ with symbol of type(p, 1 — p) and ordefu; + po
, finishing the proof of Proposition 2.1.

Using Proposition 2.1 wittdy = Ao = U, N =nk=1,l=n—1
andu; = —1,j = 1,2, we havelU; U; € ¥ 2(R") =

U : L2 comgR") = Line(R™ x §"71).
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We will show that

(2 14) U]_ : Licomp—) L§+1,|OC’ Vs < 0, and
. T2 1
U1 . Lcomp—> B2,OO,IOC — Llf IOC’ Ve > O,

which will follow from the fact that, for all- € R, the Schwartz kernel
(2.15)

n+4
K psri<ps—r € I (M) + O (R T (Nt — 2w = 0})),

N

where< D >= (I +|D|?)z. In fact, (2.15) implies that

< D >T U1 < D >_T5 L%17coden> Rn+l X Sn 1)
FITT (Nt — 2w = 0})
—
2 2 —nt2 o
UliLT lcomp—> LT,IOC—'_I 2 (N {t—xw:O})

Ioc(

— L |0C+B2oo|0C

sincely(N*{t =z -w}) = B, IOC(R”“ x S"~1). This implies (2.14).
To see (2.15), we work in the generality of Proposition 2.1 :

. bk
Proposition 2.4.Let A be asin Proposition2.1.Let ¢ I, * (A)andB ¢
wr(RY),C e wr(RNTHH!) be properly supported. Then the Schwartz
kernel

~ +k+
Koap € 7770 () + 0@ 1T (v = o)),

Proof. We start with the cas€ = I € ¥°. We have the oscillatory repre-
sentation

KABW'):/e“( Y)W = g (s € €1y dy dE A€ dny!

k
witha € S,’f_f, b € S)'. (Here, and throughout, we useo denote spatial
variables irrelvant to the argument.) As in the proof of Proposition 2.1, we
can assume thatupp(a) C {|¢'| < 3|¢”|}, since outside of that region
there is no zero-section problem and the standard result on the composition
of FIOs withwDOs applies. Since thg-gradient of the phase is¢’ + 7/,
the standard integration by partsijhshows that the contribution t& 4
from {<n >> 3 < ¢ > +3 < ¢ >}isin O°(RNTFH x RY). The
remaining regions arg2 < jfg < A< >><>>3 <y >}
and{3 < ¢ >>< 7 >> 3 < ¢ >}. On the first region, stationary
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phase iny/, n’ yields an element of“”l‘%(/i) . On the second region,
integration by parts\/ times iny’ , followed by integration im’ over {<
n >< 2 < ¢ >}yields

[t g iy g

with ¢ € SH—a—MRN+HRH » RN » (RF\0) x RY) , where—N =
i+ % +r1+ N —M(1-p). Integrating iny’, ¢’ when—M < —N yields

a kernel in
N+k+l1

CO®RN; 1, t (N*{a" =0}),
Derivatives inz’ bring down powers off’ , which are handled by increasing
M. Thus, the contribution té& 4 53 from the second region is in

_ N+k+l

CO®RNI,T T (N =0})).
Similarly, for the third region, we integrate by paftstimes iny/, integrate
over
{< & >< % < 1’ >}, and repeat the above argument to obtain a con-
tribution in the same class. This finishes the proof wiies 1. For general
C, we note that since the projection, : A — T*RN+k+1\0 avoids the
zero section, the usual composition calculusz@Os and FIOs applies.
Furthermore, we have

ro (o N-+k-+ 0o N, =g
w2 (R ) o CFRYI (N*{z" = 0}))
o Nkt
C @M (N = 0}),
yielding the desired result. O

For A = Uy, we havey = —1 andN + k + [ = 2n, so Proposition
2.4 implies (2.15). This finishes the proof of thé estimates, Thm. 1(a),
for U;. In fact, (2.14) allows one to gé derivative higher; the limitation
5 < —% in Thm. 1(a) comes frory,, which we now turn to.

We first show that ifA € I“‘%(Ag) is properly supported, thea* A €
Wl (R™) if =3 < pu < 0. Sinced; 4 oWoh oWy & € Wy, by the Caldebn-
Vaillancourt theorem fog),, we haveA*A : L7, comp — LQ—MJOC , and
thusA : L] comp— Liye: From (2.3), we have

Ka(z,tw,y) = / B D G )

Rn+2

(2.16) ap—1(x,t,w,y; (&, 7),0)d{drdo,
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- — . 1
with a,—1 € SY !supported infc < ¢£,7 >2< |o| < ¢ < &, 7 >} Thus,
2

KA*A(Zay)
= / / / ei‘z’(y’Z’x’t""’f’””’é’&’%)ia“,1a#,ldmdtdwd&dodeédc}d%,

where the integral is ovéR" ! x S"~! x R"+2 x R"*2 and

y) - 5—(3:—2)-§
(7% = |¢1*) -

¢(y7 z,x,t,w,f,a, T, 57 6-77—)
g

(@ -
Ht—y W)= (t—2 W)+ o5 (%2—|§\2).

Sinced,¢p = £ — §,~dt¢ = T — 7, we can integrate by parts in 7 to obtain
againof(1+|¢ —&[)~N (14 |7 — 7|) =" in the integrand. Then integrating
inx,t,& 7, we obtain a new oscillatory representationfof- 4 with phase

(= 9)- €+ )+ T2 (2~ [P,

amplitudeb (x; (€, 7,5))b1 (%; (€, 7,0)), with b; € S¥ ' j = 1,2, and

integrated with respect idwdodsdrdé. We can thus write
(2.17)

a(r —\ 12)
Kaa(z,y) = /el[(z y) ()t : ]bl*bg( *; &, 7, 0)dwdodrdé,

whereby b, isthe partial convolution in the variable. Using Proposition 2.2
with k£ = 1, one has supfu;) C {< 0 >< ¢ <&, 7 >}, sothathy, 1 =

bi¥by € SN if p—1 < —1,ie.,pu < 0, with supp(ba,_1) C {<
(1,0),(3,0)

o><c<&T>,<E>~< 1>} Lettingn = Tw, drdw = |n|t~"dn,
and¢ = £ +n, we have

(2.18) Kaea(sy) = / =Dz, y ),
where
(2.19)
-2 (9n—()- n
c(z,y;¢) :/]R L © 2l (277C) Cbzuﬂ(z,y;c —n,|nl,o)|n|*"dndo.

We will show thatc € 52“ if —2 <p<0.

We note that in the expression fa((), the integration is over a region
of the form

Hy(Q)={n:v""Inl <I¢=nl <~lnl}
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for somey > 1. This isR™ with two balls deleted:
H,(¢) = R"\(B(=48¢; 0[¢[) U B((1 +6)¢; 0[¢))),

for appropriate > ¢ > 0 depending on. To estimate:(y, z; ¢), we divide
H.(¢) into five subregions, described below, noting that one may introduce
a subordinate partition of unity which will not affect ti#, 0), (3, 0) type
of the amplitude that was described above.

Denote by the phase function of (2.19), and note that

In[*(¢ —n) — ¢ —nl*n

(2.20) dyp =0 L
and
(2n—=0)-¢, ¢ .
2.21 dotp| = |2 2| = 2L . dist(n, Py,
(2.21) |dop| = | e | PR (n, Fe)

whereP; is the affine hyperplan§ + ¢t

Region (1):{(n, o) : dist(n, F¢) < ¢[C], o] < ¢[¢] }.

We are working near the nonisolated critical points- %, lo| < ¢|C].
One calculates that?+) has rank 2 at these points, with a lower bound on
a2 x 2 minor beinge|¢|~2 uniformly. Performing stationary phase in two
variables and integrating over a ball of raditg| in the remaining: — 1,
we obtain a contribution te(z, y; () dominated by

1
(SIS (C =) 21 < el
Now pick ane € (0, min(— g, + })). We form
3t
Region (I):{(n.0) : 1 € Hy(C), distln, ;) > cmaz(Z7[¢])}.

For such points, we hayé, | > c|n]€*% . Integrating by parté&vV times
in o yields an integrand which is |2 NG—=3) < c[p|~2-n—eN,
Integrating ove|o| < ¢|n|} and then integrating ovelin| > ¢|(|} yields
a contribution taz(y, z; ¢) which isO(|¢|71=N) = o(|¢|?*) for N > 1/e.

Region (I): {(n.0) : n € H,(C), elc| < [nl < ¢V, distin, Pr) <

|2+
maz( €] <D}
We further decompose this into (Illaz)c\n\% <|o| < '”l‘ére}and (Ib):

{\nllé‘“ <|o| < ¢/n|}. On (llib), one has

n|¢
¢l

ol ¢
] 2 e gl =51 > ¢
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which allows us to integrate by pafstimes inn. Since each differentiation
in n gains|n|~!, the integrand is< C|77\_2_"(\L%\77|_1)N- Integrating ino
and then iny and introducing polar coordinates alofyg, this contribution

to c(y, z; ¢) is dominated by

¢l

|<|N/ ,r,—l—n—(1+e)NTn—2(T%+e/|<|)dr’
<l

which is < ¢|¢|71=N + ¢|¢| 27N = o(|¢|**) for N large. On (llla),

integration by parts doesn’t help and so we simply estimate the intégral

by c|n|=27"|n|**¢|¢|~1, which, when integrated in is dominated by

t el-n Ste
/|<|<| : q rn_zrr; dr < P = oflcP)
sincee < p+ 2.
Finally, we have
Region (V): {(,0) : 1 € H,(Q), [nl > elC]7, distn, 7o) <
).
Here, we simply estimate the contributiond@, z; ) by

[e'e] §+e
re
|77|727"d0d77 < c/ plnpn=2 d,r
//(IV) Cle Iq

which is < c[¢| 2 = o(|¢|*) if e < — k.

Thus, we have shown thét(y, z;¢)| < c|[¢|**. Differentiation of the
phase ir{ just multiplies the integrand by a function homogeneous of degree
zero, which leaves the type and order of the amplitude unchanged, as does
differentiation in the spatial variables. Heneeg 53*5 , and thusA* A :

Llacomp — L2_ = A: Llacomp — L|20C ; for A = U2 we have

loc
Hy
p=—landthusd: L2, comp— Lj, .. Combined with the esti:nates for

‘e A 1 T T2 2
Uy, thisgives Thm. 1(a) fos < —5. To obtainls : L—%,comp_) B;,m,loc’
we need the following the analogue of Proposition 2.4, which exhibits the
additional% in the order of the singularity of¢t = x - w} (in comparison
with Proposition 2.4) mentioned at the end of the discussidrh of

Proposition 2.5.LetA € I 1 (4,), andB € w1 (R"), C' € w2 (R™1 x
S"~1) be properly supported. Then the Schwartz kernel

PSS et §

Keap e 70 (Ay) 4 O RY 1T (NH it = 2 w))).
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Proof.Sincery, : Ay — T*(R"1 xS"~1)\0, as in the proof of Proposition
2.4 it suffices to deal with the cage = 1. We make use of the alternative
phase function

QE(I’,t,w,y;g,T,O') = ("L‘ _y) £+ (t - 'W)T+ ﬁ(T - |£ —TW| )
which also parametrize$,. Then we have the representation

Ka(z,t,w,y) = /eig’au_lddeda, au—1 € Sﬁfl,

and we may assume that=*> ¢ (2, 3) and< ¢,7 >1/2<< o > onthe

support ofa,,—1(z,t,w, y; €, 750). With b,, € S* the amplitude of3, we

have

(2.22)
Kan(@,tw,y) = [ 10 et g2 (2 olerof)by—2)

COp— 1( 5’7— U) brl(*,n)dyddedadn

The proof now follows in general terms that of Proposition 2.4. Wl%ete

<£> 3 . . . . . . ~
=< < 5, stationary phase i, n yields an oscillatory mtegral with phase

and amplltude wS’”””1 ! , yielding an element of“Jr b (/12) Since the
y-gradient of the phase in (2.22)4s¢ +n, on the regiong< & >> % <
n>+i<o>}and{<n>>3 <¢>+1 <o >} onemay integrate
by parts any numbelM times iny, yielding an amplitude of arbitrarily
negative order i, n, o. Wheremaz(< § >, <n >) > % < T >, this may
be integrated in all the phase variables to yietd“a kernel; wherer is the
elliptic variable, integrating in all variables excepgives an expression

) p—2gt
/ez(tm'“’)Tdu_l(*;T)dT e C¥([R™ I, * (N{t==z w})).

Finally, one must deal with the regior{% <o >><E>> % <n>}
and{% <o >><n>> % < ¢ >}. Note that integrating i yields, by
Proposition 2.3(b), the representation

/ il@—y) 4 (t—aw) T+ (y—2)1)

T

2 _ _ 2
an <*§€77—§ 7'\527%0\) bry (*;U)dysﬂdfdﬂ
with a,,(x; &, 7;s) of orderu in (&, 7), taking values inf*~1({s = 0}).

_If < & _>2_% <1 >, then integration by partd/ times iny and then
integration iny, n gives

/ ot t=aw)rly b (% €)dédr.
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We may now integrate i, noting that for each fixed, the integral ir¢ is
transverse to the singularity of, at{|{ — 7w| = |7|} and yields a (smooth)
symbol inr, giving [ ¢it=<)7p (x; 7)dr € I~ "2 (N*{t = z - w}). On
the other hand, ik n >> % < £ >, we integrate by parts ip and then
integrate iny, £ to obtain

/ei[(t_x'“)T_Z'"]bﬂ(*; T)e_ (% m)drdn = /ei(t_x'w)TBH(*; T)dT
€ CRR™:IT (N*{t =z w})),
finishing the proof of Proposition 2.5.

Now repeat the reasoning below (2.15), noting that (2.14) has been re-
placed by

(2.23)
_nt4 n

K<D>7'U2<D>77' E Il 4 (A2> + COO(RTL7 I_—;l-‘r'f'(N*{t —Tr-w = O})),
2

so that

N 1
U2:Lz—l—>L%+I_%1(N*{t_x'w:0})(_>L72“+Bz2c>o|00'

1
Hence,Uz : L2 comp — L§+1,Ioc’v‘9 < —3 andU; : LQ_%,comp -

1
I?, + B?

2 . . .
1 loc sooloc L%,Ioc’ finishing the proof of Thm. 1(a).

3. L? — LY estimates

We embed the operatdf in an analytic familyU<, « € C, by inserting a
factor< &, 7 >~ into the amplitude of the oscillatory representation (2.3).

Using the same parabolic cutoff as previously, decomptse- U* + U,
with U € I;Re(a)flj(/lj),j — 1, 2. By Proposition 2.1, we have that

2
U e e w4 (Rn) for —Re(a) — 1 < —1/2 and thus
2

N 1
(3.1) U L%Re(a)_l,comp% Lie -5 < Re(a).

Furthermore,

Kug (@ tuoy) = [ [ elemmestearipaar
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with b¢ € S 3~ Re(@) . Thus,Kyp € Ljs . if Re(a) > n — 3, and hence

« o0 1
(3.2) Uf : Leomp— Lige:  Re(e) >n — o

Similarly, by the results of2 for I’f% (A2), we have
2

NG

(33) U : L% pa-1comp— Liger —1< Re(a) <
and alsoKyg € Lyg . if Re(a) > n, so that
(3.4) Us : Ltomp— Lige:  Re(a) >n

It is straight forward to verify that the growth of the bounds in (3. 1) (3.4)
are at most exponential jim (« )| Interpolating (3.1) forRe(a) = 2+E

with (3.2) for Re( ) =n— 2+E for e > 0 arbitrarily small, we obtain
U1 g 5 — LV, Vp, < p < 2. Interpolating (3.3) folRe(a) =

4n
2n+1

—n== Wlth (3 4) forRe( ) = n + ¢, we obtain the same bounds fo§ ;
smceU UY + UY, we have shown that

U:LP Ny

n
L cp<a.
~Ltcomp™ Hloc 9,11 P

To extend this td.? — L estimates, we use

Proposition 31T € I“_%(Aj), j=1lor2,is ContmOUSLicompﬁ

t|OC for somes, t € R, then

1

t+ loc

Proof.If 4; € Iﬁf%(/lj) andB € ¥ "(R"),C € ¥"(R"" x S"71) are
elliptic and properly supported with parametridgs', C—1, then

Koap € I 4 (Ay) + C¥RM™ x 81 =3 (N* [t = - w}))
(or better) by Proposition 2.4 and 2.5. An element of the first space maps

L, comp — quoc by assumption and therefore its contribution to

Aj = C (CA;B)B ' mapsL? . comp— L? Forthe second term,

t+rloC



Wave equation 131

we note that operators with Schwartz kernel§iR (R +! x§n—1; ntr—"3"

(N*{t = z-w})) mapLzs”ComptoI“”‘nT_l(N*{t = z-w}). Theinclusion
TS I

"= (N*{t =2 -w}) — LZIOC

holdsifq < (pu+r-+t+1)~1. Thus,ifr < min(—p—t, %—,u—t—l) =1_

q
pt—t— 1, then the second contribution ty mapsLy, , comp— L;

t+rlOC
0
Applying the Proposition t@/, we obtain
’ 4n
. TP (RN p n+1 n—1
U: LP(R )—>Ls+i(R xS, s <o, 1 <P<2

yielding Thm. 1(b).
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